
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-06-01

Characterizing the Spatial Variation of Crop Water
Productivity for Variable-Rate Irrigation
Management
Jeffrey David Svedin
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Plant Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Svedin, Jeffrey David, "Characterizing the Spatial Variation of Crop Water Productivity for Variable-Rate Irrigation Management"
(2018). All Theses and Dissertations. 6878.
https://scholarsarchive.byu.edu/etd/6878

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6878?utm_source=scholarsarchive.byu.edu%2Fetd%2F6878&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


www.manaraa.com

Characterizing the Spatial Variation of Crop Water Productivity 

for Variable-Rate Irrigation Management 

Jeffrey David Svedin 

A thesis submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of 

Master of Science 

Bryan G. Hopkins, Chair 
Neil C. Hansen 

Steven L. Petersen 

Department of Plant and Wildlife Sciences 

Brigham Young University 

Copyright © 2018 Jeffrey David Svedin 

All Rights Reserved 



www.manaraa.com

ii 

ABSTRACT 

Characterization of Crop Water Productivity 
for Variable-Rate Irrigation Management 

Jeffrey David Svedin 
Department of Plant and Wildlife Sciences, BYU 

Master of Science 

Irrigated agriculture is the primary consumer of limited worldwide freshwater resources. 
Drought, growing world populations, and environmental demands compete with irrigation for 
freshwater resources—threatening sustainable global food, fuel, and fiber production. This 
escalating global crisis demands that agriculture produce more food using less water. Traditional 
irrigation management has used technology to apply uniform irrigation rates across landscapes—
ignoring natural environmental variation. This provides inherent inefficiencies of over- or under- 
irrigation within individual fields. Variable-rate irrigation (VRI) is modern technology that 
employs global positioning systems and geographic information systems to match irrigation to 
spatially variable crop water demands within a field. Although commercially available, VRI 
lacks scientifically validated decision support systems to determine spatially and temporally 
variable crop water demand. The purpose of this research is to explore spatial and temporal 
variations in crop water demand to inform growers utilizing VRI. This research consists of four 
seasons of winter wheat (Triticum aestivum L.) production on a commercial farm in Idaho that 
employs a VRI system. In Chapter 1, the spatial variation of crop water productivity (CWP, the 
grain produced per unit of water consumed), is characterized for two seasons (2016-2017) and 
we propose a unique conceptual strategy for VRI management targeted at CWP. Observed CWP 
ranged from 4.1-21 kg ha-1 mm-1 with distinct spatial variation that, when considered together 
with grain yield, were shown to be useful for VRI management.  During the 2017 growing 
season, VRI zones conserved 25% of irrigation compared to traditional uniform irrigation 
management. In the second chapter the spatial variation of soil water holding capacity (SWHC) 
was measured at 90 sampling points throughout the field. Then, during the 2016-2017 growing 
seasons, the spatial and temporal variation of soil moisture were modelled to characterize crop 
stress and its influence on grain yield. Soil within the field showed large spatial variation of 
SWHC, ranging from 147-369 mm. Under uniform irrigation in 2016, the natural variation of 
TAW created 21 day variation in the onset of crop stress throughout the field and under VRI in 
2017 the onset of crop stress spanned 56 d. Surprisingly the variations in TAW did not 
statistically influence yield in 2016, and in 2017 the rate of irrigation predicted yield and TAW 
again did not statistically predict yield. This suggests that other environmental variables should 
be included when delineating irrigation zones and rates for VRI. 

Keywords: variable-rate irrigation, crop water productivity, soil water holding capacity, 
evapotranspiration, soil moisture depletion modeling 
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CHAPTER 1 

Characterizing the Spatial Variation of Crop Water Productivity 
in Winter Wheat to Inform Variable-Rate Irrigation 

Jeffrey D. Svedina, Neil C. Hansena, Ruth Kerryb, Bryan G. Hopkinsa 
aDepartment of Plant and Wildlife Science, Brigham Young University, Provo, UT 

bDepartment of Geography, Brigham Young University, Provo, UT 

ABSTRACT 

Expanding worldwide populations and water scarcity create a significant challenge of 

producing more food with less water. Variable-rate irrigation (VRI technology shows promise 

for improving crop production per unit of water consumed, or crop water productivity (CWP, 

through spatially variable irrigation rates that match localized crop water demand. However, the 

spatial variation of CWP at the field scale is largely unknown and management 

recommendations employing VRI to promote CWP are limited. The objectives of this work are 

to address these research gaps by: (i describing the spatial variation of CWP on a commercial 

winter wheat field outfitted with VRI technology and (ii measure the spatial response of yield 

and CWP to the proposed conceptual model for delineation of VRI management zones. 

Measured values at 90 points in the field near Grace, Idaho, USA in 2016 were used to describe 

the spatial variation of CWP. Seasonal evapotranspiration (ET was calculated using a water 

balance approach. Then, in 2017, irrigation treatments were imposed based on a conceptual 

model utilizing three years of historic yield and the 2016 CWP map. Irrigation was increased or 

decreased 30% relative to the grower standard practice rate (GSP where CWP and historic yield 

were both high or both low, respectively. The spatial variation of CWP for both years were large, 

ranging from 4.7-21 kg ha-1 mm-1. Under VRI management 25% less irrigation was applied and 

CWP variance decreased by 0.8 suggesting VRI management has the potential to improve 

uniformity of CWP across the field. Where irrigation rate was increased, yield improved 6% but 
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CWP decreased 7%. Where irrigation was decreased, yield decreased 11% but CWP was equal 

to the GSP. This confirms that VRI can be used to manipulate CWP. Yield and CWP correlation 

coefficients were 97% (2016) and 75% (2017), but with minimal correlation between CWP and 

seasonal ET. This demonstrates that agronomic and environmental factors that control yield had 

a more important influence on CWP than those that directly influenced ET. Because of the large 

influence of yield on CWP, future approaches to managing VRI to improve CWP will require 

algorithms that include a suite of agronomic and environmental variations with strong influences 

on the spatial variation of yield. 

INTRODUCTION 

Prolonged droughts, growing populations, increased urban demand, and changes in 

climate trends are causing water shortages worldwide. World population is projected to reach 10 

billion by 2050 (United Nations 2017) and the demand for already scarce freshwater will 

increase, along with the demand for food, fuel, and fiber. Agriculture faces the need to increase 

production while using less freshwater resources. Irrigated land comprises produces 40% of the 

world’s agricultural products on 17% of cultivated farmland (Abdullah 2006; Evans et al. 2013; 

Schaible and Aillery 2012). This high production of agricultural products on irrigated fields 

consumes four-fifths of the global available freshwater resources annually (Postel 1999). 

Improved water conservation and irrigation management practices are critical to achieve 

improved water-use efficiency.  

Traditional irrigation approaches seek uniform water applications across fields to 

maximize yield, but this approach ignores inherent spatial variability in crop response to water 

and may result in water deficits in some places and surpluses in others (King et al. 2006). Spatial 

variability in crop water demand is driven by factors that influence plant health, rooting depth, 
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and water and nutrient uptake. Among spatially variable factors are relatively permanent soil 

properties, such as topography, soil texture, organic matter content, and water-holding capacity. 

The challenge is further complicated by temporally variable factors such seasonal variation in 

solar angles, weather, microclimates, pests, pathogen pressure, crop response to management 

practices, and soil temperature, fertility status, and compaction. Significant spatial variation in 

soil and crop water status has been reported, even in mechanically leveled fields (Daccache et. al. 

2014; Longchamps et al. 2015). Sadler et al. (2005) demonstrated that spatially varying irrigation 

rates to match crop water demand could conserve up to 50% of applied water. Variable-rate 

irrigation (VRI) refers to spatial and temporal variation of irrigation application rates to optimize 

plant responses for each unit of water applied (Evans and King 2012).  

Variable-rate irrigation is most commonly implemented with center pivot and linear 

move systems and include zone control (site-specific) and speed control systems. Site-specific 

VRI has the capability to alter the water application rate at each nozzle of a center-pivot 

irrigation system. Combining the use of geographic information systems (GIS) with geographic 

positioning systems (GPS) and VRI systems, irrigation application rates can be altered to match 

predetermined spatially variable growing conditions. This is accomplished by defining irrigation 

zones (zones throughout the field with similar crop water demand) to inform the computer 

controlled system to adjust the irrigation rate as sprinkler nozzles move over the field. Sadler et 

al. (2002) conserved 8-21% of irrigation water using VRI techniques over three seasons of maize 

(Zea mays L.) production. Al-Kufaishi et al. (2006) conserved 13% with VRI in one season of 

sugarbeet (Beta vulgaris L.) production. In a three-year simulation of potato (Solanum tuberosum 

L.), alfalfa (Medicago sativa L.), and maize production, Hedley and Yule (2009b) reduced 

irrigation by 20-26% in three-year modeling of pasture and maize production, and Hedley et al. 

(2009) in one season of VRI management of pasture, potato, and maize reduced drainage 25-
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45% and applied 9-19% less total irrigation. West and Kovacs (2017) suggested the adoption of 

VRI in the Arkansas basin would lead towards sustainable groundwater withdrawals. These VRI 

systems are available commercially and demonstrate the potential to conserve water, but 

scientifically defined and user-friendly decision support systems to guide grower’s VRI 

management decisions need further development (Evans and King 2012; Evans et al. 2013).  

Current VRI support systems use irrigation zones based on soil water holding capacity 

(SWHC) to match VRI to soil hydraulic properties and avoid over- and under-irrigation (Al-

Kufaishi et al. 2006; Daccache et al. 2015; de Lara et al. 2017; Hedley and Yule 2009a; Hedley 

and Yule 2009b; Hedley et al. 2009; King et al. 2006; Li et al. 2007; Messick et al. 2017). This 

maximizes crop production per unit of land. However, Westfall et al. (2009) observed that in 

water scarce regions maximizing the yield produced per unit of water, or crop water productivity 

(CWP), is desired. Additionally, Evans et al. (2013) noted that VRI research needs to address the 

spatial variation of CWP for sustainable water use.  

Management of CWP requires large enough variations in CWP to justify the added time 

and costs of VRI. Most CWP research reports field averages or is conducted on research plots 

designed to limit the influence from spatial variation. As such, CWP field averages for well 

managed fields are understood (Passioura 2005) but the range of values and spatial variation of 

CWP at the field level is largely unexplored. Filling this research gap is required to justify the 

management approach suggested by Evans et al. (2013). Additionally, VRI management 

designed to improve CWP requires a characterization of the spatial variation of CWP and 

subsequent response to VRI management. Very little research has been conducted on the spatial 

variation of yield response to water (Salder et al. 2005; and Haghverdi et al. 2016) with no 

research on the field scale spatial response of CWP to water to date.  
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In this study we (i) quantify the spatial variation of CWP in winter wheat (ii) propose and 

test a conceptual model for delineating VRI zones. The conceptual model is based on separating 

the field into four zones created from combinations of high and low relative historic yield and 

high and low crop water productivity (Figure 1). Within the conceptual model, areas where both 

CWP and yield are observed to be relatively high (Figure 1: lower right quadrant) are most likely 

to benefit from increased irrigation. In contrast, areas where yields are relatively high but CWP 

is low (Figure 1: lower left quadrant) are likely over-irrigated and reduced irrigation should be 

explored. In areas where both historic yields and CWP are low (Figure 1: upper left quadrant) 

factors other than irrigation (soil fertility, soil physical properties, topsoil depth, pests, etc.) are 

limiting yield. In these zones, one of two approaches need to be taken—depending upon the 

situation. If the factors limiting yield can be reasonably and economically remediated (e.g. 

fertilizer, pH, salts, sodium absorption ratio, compaction, organic matter, and certain weed, 

insect, and pathogen pressures) then irrigation rates are likely needed to remain the same and 

reevaluated over time. If the factors negatively impacting yield are not reasonably or 

economically able to be remediated, irrigation should be reduced to better match the yield 

potential. Finally, areas where yields are relatively low but CWP is high (Figure 1: upper right 

quadrant) are irrigated optimally, and unless it is possible to amend the cause of low yields, 

irrigation should not be altered.  

In this study, we evaluate the application of this conceptual model. The specific 

objectives are to: (i) describe the spatial variation of CWP and (ii) investigate the spatial 

response of yield and CWP to the proposed conceptual model for delineation of VRI 

management zones. 
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METHODS 

Site Description and Management 

The CWP was evaluated during two years of winter wheat (Triticum aestivum L.) 

production for a commercial field (23 ha) managed in a three-year cropping system of potato-

wheat-wheat. The field is located near Grace, ID, USA (42.60904, -111.788; elevation 1687 m). 

The soil is a Rexburg-Ririe complex with 1-4% slopes. Rexburg and Ririe soils are both coarse-

silty, mixed, superactive, frigid Calcic Haploxerolls derived from loess or loess influenced 

alluvium with five percent rock outcroppings. The soil texture is a silty clay loam. There is a 6m 

difference between lowest and highest elevation within the field. About 0.3 ha of the field has 

emerged basalt bedrock (Figure 2) and, thus, was not farmed. Irrigation water was not applied to 

these areas and, as such, was not included in the study even though this is certainly part of the 

water savings for this field as a function of VRI.  

The semi-arid climate typically has hot days and cool nights during the growing season 

with a typical annual growing season comprising 80-110 frost-free days. Average annual 

precipitation is 392 mm with most of the precipitation occurring during the cold months and 

minimal amounts during the summer. The historical average precipitation for May-August 

months is 150 mm. However, precipitation was relatively sparse during the time of this trial with 

precipitation between soil sampling at spring green-up and at harvest totaling 95 and 90 mm in 

2016 and 2017, respectively. During the growing season, irrigation is applied with a 380 m 

center pivot with 5 m nozzle spacing equipped with a Variable-rate Irrigation System 

(GrowSmart Precision VRI, Lindsay Zimmatic, Omaha, NE, USA). There were 11 irrigation 

events in 2016, and 14 in 2017 with irrigation events occurred every 5-7 d in spring and every 3-

5 d during peak evapotranspiration (ET) rates for 2016 and 2017. 
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Planting dates were 5 Oct. 2015 and 10 Oct. 2016. Conventional best practices for soil, 

pest, and crop management were utilized by the grower. Harvest dates were 16 Aug. 2016 and 30 

Aug. 2017. In 2016, the grower standard practice (GSP) VRI prescription was used, which was a 

uniform irrigation rate except for no irrigation being applied in field areas with emerged bedrock 

and a 10% decrease in a few areas defined by the grower as visibly having more soil water 

(Figure 3). Irrigation for 2016 was considered uniform because where the grower decreased 

irrigation 10% the total impact on seasonal ET was less than 5% compared to the standard 

irrigation rate. Irrigation contributed 43% of seasonal ET, which is why the 10% reduction in 

irrigation had limited influence on the total ET (Table 1). The 2017, the VRI pattern was 

developed based on the conceptual model (Figure 1) and GSP control strips. 

 

Yield Data Collection  

Two years of historic yield data for winter-wheat (2013-2014), without information on 

ET, was evaluated together with two years of yield data with measured seasonal ET (2016-2017). 

Wheat was harvested with a commercial combine and all yield was collected with a calibrated 

yield monitor (New Holland Inteliview 4, Turin, Italy) using a mass flow sensor collecting yield 

data ever 10 m2 spatial density.  The yield data was processed as described by Kerry and Oliver 

(2003). Erroneous data points were defined as outside the limits of ± 75% of the median. In 

addition, points where the combine did not harvest the full header width were removed. Yield 

data was calibrated using a weigh cart and validated with wheat bin storage showing an overall 

accuracy of +1%. 
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Crop Water Productivity Analysis 

A CWP analysis was used to describe the spatial variability of water utilization 

throughout the field. Crop water productivity was calculated as: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑌𝑌/𝐸𝐸𝐸𝐸 (1) 

Where Y is yield (kg ha-1) and ET is evapotranspiration (mm) calculated at sample points 

(Figure 2) as the total of crop transpiration and evaporation from spring green-up through 

harvest. Total seasonal ET was calculated with the following water balance equation: 

𝐸𝐸𝐸𝐸 =  𝑃𝑃 + 𝐼𝐼 + ∆𝑆𝑆 − 𝑅𝑅𝑅𝑅 − 𝐷𝐷 (2) 

where P is precipitation, I is irrigation, ∆S is the difference between soil water content sampled 

to 1.2 m depth at spring green-up and at harvest, RO is surface water runoff, and D is soil water 

drainage to below sampling depth. Seasonal RO was assumed negligible because the greatest 

daily precipitation intensities were 16 and 14 mm with infiltration rates greater than this amount 

and no visible indications of surface water movement.  

A soil water depletion model was developed to estimate D with initial values measured as 

soil water content at spring green up and with a daily timestep of water depletion calculated 

made using the water balance equation. For those calculations, daily ET rates were obtained by 

calculating reference ET using a standardized Penman-Monteith equation and a crop coefficient 

(Allen et al. 1998). When soil moisture exceeded site-specific field capacity values to 1.2 m 

deep, excess water was assumed to be lost as deep percolation. Daily deep percolation values 

were summed for the total deep percolation used in the season water balance equation. Inputs for 

daily ET and precipitation were measured at the Grace, ID AgriMet weather station located 

approximately 2 km east from the field site (US Department of Interior Bureau of Reclamation, 

Pacific Northwest Region; https://www.usbr.gov/pn/agrimet/wxdata.html).  
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Sample locations were located on a 70 m grid (46 samples) with random nested points 

(44) to collect sufficient samples to compute reliable variograms for kriging, the geostatistical 

estimation procedure (Webster and Oliver 2001). Soil samples were collected at the beginning of 

the growing season on 20 April 2016 and 4 May 2017 and after harvest on 16 August 2016 and 1 

September 2017 using hand augers or a trailer mounted hydraulic drilling auger (Giddings 

Machine Company, Inc., Windsor, CO, USA). Soil cores were collected to the approximate 

depth of the rooting zone at four increments of 0-0.3, 0.3-0.6, 0.6-0.9, and approximately 0.9-1.2 

m to capture the distribution of moisture throughout the soil profile. Soil samples were stored in 

plastic bags to eliminate evaporation losses until lab analysis for gravimetric water content (θg). 

The θg was multiplied by the soil bulk density, and then divided by the density of water to 

calculate volumetric soil moisture (θv) for each sample (Qiu et al. 2001). Bulk densities were 

calculated from spring 2016 soil samples by weighing the dry soil and dividing by the volume of 

the soil auger used for sampling. 

 

Geostatistical Methods and Interpolation 

A variogram of the normalized difference vegetation index (NDVI) from bare soil 

imagery of the field site was computed to identify the scale of soil spatial variation. The 

variogram had a range of ~140 m. Following the ‘rule of thumb’ developed by Kerry and Oliver 

(2003) that one should sample at an interval of approximately half the variogram range, the 

interval of 70 m was used for the main sampling grid (46 samples). Additional sample points (44 

samples) were located at random points along the grids to strengthen the sensitivity of the 

geostatistical analysis. This sampling scheme was used to calculate spatial variation of ΔS. Prior 

to geostatistical analysis of each variable, summary statistics were calculated and histograms 
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plotted. If the skewness of the data set was outside the bounds of ±1, then the data was 

transformed to logarithms for variogram computation and back transformed to the original scale 

following kriging (Kerry and Oliver 2007). Where notable trends were identified in the data, 

variograms were computed using regression models fitted on the coordinates of the data and 

analyses performed on the residuals of the fitted function. Following variogram computation, 

each variable was ordinary kriged to a 2 m grid. All variograms were computed and kriging done 

using SpaceStat (BioMedware, SpaceStat 4, Ann Arbor, MI, USA) and ArcMap’s Geostatistical 

Analyst (Environmental Systems Research Institute [ESRI] 2011, ArcGIS desktop: Release 10, 

Redlands, CA, USA). Geographically weighted regression (GWR) was used to analyze the 

spatial relationships between CWP constituents. A GWR employs a moving window approach to 

identify correlations between variables to indicate spatial ranges of correlation between variables 

dependent upon the spatial location. All GWR analysis was done in SpaceStat. 

 

2017 Variable-Rate Irrigation Treatments 

The objectives for the second year were to measure the spatial variation of yield and 

CWP in response to a variable-rate irrigation scheme derived from the conceptual model (Figure 

1). The irrigation treatments were designed using historic yield (Figure 4) and the 2016 CWP 

spatial variation as inputs to the conceptual model. A High irrigation treatment was applied to 

areas where both CWP and yield were high (Figure 1: lower right quadrant) and the Low 

treatment was applied to areas where both CWP and yield were low (Figure 1: upper left 

quadrant). In lieu of individual irrigation treatments for the two remaining quadrants in the 

conceptual model, duplicate control zones that followed the GSP were utilized. High and Low 

irrigation treatments were relative to the GSP rate (15 mm per irrigation event) where the High 
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treatment received 30% more irrigation water (20 mm) per event while the Low treatment 

received 30% less (11 mm; Figure 5). These treatments were applied at each irrigation excluding 

two fertigation events, where a uniform rate (15 mm) was applied across the field to avoid N 

fertilization differences. 

A Paired t-test was performed along the GSP irrigation zones to evaluate responses in 

yield and CWP (Figure 5). Data within 5 m of the treatment edge were not included to avoid 

irrigation rate overlap between zones. Paired treatments included 10 m2 plots parallel to 

treatment boundaries (Figure 5). One center pivot joint leaked across treatments—resulting in 

bias in several treatments locations. These erroneous data points were located with the yield map 

and not included in analysis. JMP Pro 13 (SAS Institute, Cary, NC, USA) was used for paired t-

test and regional analysis. 

 

RESULTS AND DISCUSSION 

Spatial and Temporal Yield Variations 

Average yields were 6.2, 4.1, 7.5, and 5.8 Mg ha-1 for 2013, 2014, 2016, and 2017, 

respectively (Table 2). The wheat crops grown during 2013 and 2016 were planted in the year 

following a potato crop and produced the greatest yield. The second consecutive year of wheat 

(2014, 2017) produced markedly lower yields, with 34 and 23% reductions compared to the 

wheat the previous year. Reduced yield in the second year of wheat is a phenomenon commonly 

observed in potato-wheat-wheat cropping systems (potato was grown in 2012 and 2015). Potato 

has a shallow and inefficient root system with relatively high fertilizer and irrigation applications 

which potentially results in increased residual water and nutrients available for the first-year 

wheat in the deeper soil profile (Hopkins 2015; Hopkins and Hirnyck 2007; Miller and Hopkins 
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2007). Additionally, pests and pathogens are often crop specific and, thus, the yields are 

commonly reduced in the successive year of growing the same species (Hopkins 2010; Hopkins 

and Hirnyck 2007; Miller and Hopkins 2007). Symptoms and crop damage from greater pest and 

pathogen populations were not readily observed in this field, but this is common to have reduced 

yields due to a lack of rotation without any major visible difference. It is not possible to attribute 

which of these factors affected the second-year wheat yields, but it is likely a combination effect. 

Notably, in the season with employed VRI treatments (2017), the yield reduction was not as 

dramatic.  

Based on the topography and variation of yield, the field was divided into four general 

areas, namely: 1) ridge, 2) western toe slope, 3) eastern plateau, and 4) field edges and exposed 

bedrock (Figures 2 and 4C). The ridge is located beginning west of center at the third span of the 

center pivot and extending nearly directly north (Figure 2). There is a zone of below-average 

yield that runs along and at the top of this ridge (Figure 4) possibly from the loss of topsoil and 

exposed calcareous subsoil from erosion or pre-season water runoff and/or horizontal movement 

of soil moisture from this area of slightly higher elevation. The western toe slope is an area west 

of the base of the ridge with the lowest field elevations (Figure 2) and is a zone of above-average 

yields (Figure 4). This is likely due to an accumulation of topsoil and residual nutrients, as well 

as possible subsurface water accumulation. The eastern plateau is an area east of the top of the 

ridge that has minimal slope (Figure 2) and tends to produce greater than average yields, with 

relatively more temporal variability than the ridge and western toe slope (Figure 4). The field 

edges and rock outcroppings, as expected, have the lowest yields. This was especially the case 

for the north and eastern field edges (Figure 2). In all four years, there is a semi-circle (following 

the third from the center pivot wheel track as seen in Figure 2, of high yield crossing the eastern 

plateau, ridgeline, and western toe slope. This is attributed to a leak at the pivot joint with the 
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yield response from the additional water and nitrogen applied during irrigation and fertigation 

events (Figures 4 and 5). 

Spatial Variation in Crop Water Productivity under Uniform Irrigation 

The field average ΔS for 2016 was a 227 mm decrease in soil moisture with a range of 

146-278 mm across the field (Figure 6A; Table 1). The eastern edge of the field showed the

greatest ΔS with the least in the north and southeast corner. The soil profiles began the season at 

or near field capacity and were near wilting point in the fall, indicating that nearly all the plant 

available soil moisture was consumed during the season. Stored soil moisture, as measured by 

ΔS, contributed an average of 50% of the total seasonal ET in 2016 (Table 1). 

The field average ET was 520 mm, with a range of 315-571 mm (Figure 6C; Table 1). 

The largest ET is found on the southeast corner of the field and generally decreases moving west 

across the field where the lowest values are found in the southwest corner of the field. The 

spatial pattern of ET closely resembles the variation in ΔS (r2=0.91; Figures 6A and 6C; Table 

3). This high correlation between ET and ΔS is because the spatial variation between points for 

the other components of ET (drainage, irrigation, and precipitation) was minimal. Seasonal ET 

was not significantly related to yield in 2016 (r2=0.15; Figures 6C and 6E; Table 3). Given the 

large spatial variation in ET, the low correlation between yield and ET was surprising. This may 

suggest the 1.2 m sampling did not capture the full root zone soil moisture and access to deeper 

moisture reservoirs was not included in the ET water balance (Thorup-Kristensen et al. 2009; 

Sauer et al. 2002). Ideally, we would have sampled at deeper depths, but sampling below 1.2 m 

was prohibited in most locations because of the presence of rock. Therefore, we elected to focus 

on the upper root zone where >90% of the root biomass is active. 
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The field average CWP for 2016 was 14 kg ha-1 mm-1 ranging from 4.7 - 21 kg ha-1 mm-1 

(Table 1; Figure 6G). The lowest values are near emerged bedrock and field edges while the 

largest are located at the westerly toe slope (Figure 6G). The high CWP values that follow the 

leaky pivot joint are in error because water added from the leak was not included in the ET 

calculation; consequently, these CWP values were not included in any field means or statistics. 

The field average CWP for this site and season was greater than the global average of 10.9 kg ha-

1 mm-1 identified by Zwart and Bastiaanssen (2004) and greater than USA averages reported by 

Liu et al. (8.1 kg ha-1 mm-1; 2007), Chapagain and Hoekstra (11.8 kg ha-1 mm-1; 2004), and 

Zwart et al. (7.9 kg ha-1 mm-1; 2010).  

The spatial variation of CWP closely follows yield patterns with 95% of the CWP 

variation being related to yield (Figures 6E and 6G; Table 3). The high correlation between yield 

and CWP compared to ET and CWP indicates that, for this season and field location, yield 

variation was driving the spatial variation in CWP. The negative correlation (R = - 0.18, r2= 3) 

between ET and CWP for 2016 suggests an increase in water efficiency of the crop probably 

stimulated by physiological responses to water stress where there were lower ET rates (Table 3). 

 

Spatial Variation in Crop Water Productivity under Variable-Rate Irrigation 

The 2017 average yield was 5.8 Mg ha-1 ranging between 1.8-8.4 Mg ha-1 (Table 2). Crop 

yield exhibited similar spatial patterns in 2017 compared to 2016 with the greatest yields west of 

the toe slope and the lowest yields near the exposed bedrock and field edges (Figure 6F). As in 

2016, a pattern of high yield was associated with a leak in the pivot, which was apparent even in 

the High irrigation zone (Figure 6F). The overall field production was 23% less compared to 

2016, which is a common phenomenon with the second year of consecutive wheat crops. 
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Irrigation treatments did influence yield with the Low, GSP, and High treatments averaging 4.9, 

6.0, and 6.4 Mg ha-1 respectively. From the 30% irrigation increase, the High treatment paired t 

test plots had 7% higher yield relative to the GSP (p-value < 0.0001) and yield in the Low 

treatment decreased 11% compared to the GSP (p-value = 0.0040; Table 4). There was high 

correlation between yield and ET in 2017 (R= 0.68, r2= 46) compared to 2016 with very low 

correlation (Table 3). Under VRI in 2017, the stronger correlation between ET and yield shows 

that yields are more water dependent when broader ranges in ET exist, as compared to the 2016 

data. 

The 2017 field average ΔS was 190 mm ranging from 100-269 mm (Figure 6B; Table 1). 

The range in values was similar to 2016 and again did not reflect the spatial variation of yield 

(Figures 6A and 6E). It was hypothesized that the spatial variability of ΔS would reflect plant 

health and yield (healthier plants would remove more water from the soil) or irrigation rates. 

However, the spatial patterns between the two seasons of yield are very different from those 

observed for ΔS and the relationship was poor for both seasons (Figures 6A and 6E; Table 3). It 

appears that different environmental factors dictate the spatial variation of ΔS compared to yield 

and these factors resulted in different ΔS spatial patterns between seasons (Figures 6A and 6B).  

Applied irrigation for the Low, GSP and High irrigation treatments were 158, 225, and 

291 mm during the 2017 season compared to 198 mm applied in 2016 (Table 1). The greater 

GSP application in 2017 was largely a response to greater ET rates compared to 2016. The VRI 

in 2017 resulted in 25% less total irrigation than would have been applied with uniform GSP 

rates. The field average ET for 2017 cropping season was 497 mm, with a range of 255-620 mm 

(Figure 6D; Table 1). The spatial patterns of ET were largely dictated by irrigation treatments, 

with some in-treatment variation, but spatial patterns were quite different from 2016 (Figures 6C 

and 6D). In 2016, stored soil moisture, as measured by ΔS, was highly correlated with ET (r = 
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0.91) and explained 83% of the variation in ET. While in 2017 ΔS correlation was lower (r = 

0.35) and explained only 13% of the variation of ET (Table 3).  The 2017 low, GSP, and high 

irrigation treatments contributed 36, 43, and 52% of the total seasonal ET respectively (Table 1). 

This demonstrates that in heavily irrigated conditions, as VRI is implemented, the spatial 

variation of ET will reflect VRI management instead of the moisture removed from the soil. 

The field average CWP for 2017 was 11 kg ha-1 mm-1 with a range of 4.1-19 kg ha-1 mm-1 

(Table 1). The range and spatial variation of CWP were similar to those observed in 2016, with 

the lowest values near emerged bedrock, some field edges, and the eroded ridge, with the 

greatest values at the western toe slope (Figure 6H). Similar to 2016, the high CWP values that 

follow the leaky pivot joint are incorrect because the water added from the leak is not included in 

the ET water balance equation (Figure 6H). Crop water productivity variance was 4.2 in 2017, 

compared to 5.5 in 2016. The lower variance shows that VRI management has the potential to 

improve uniformity of CWP across the field.  

The High treatment paired t test plots average CWP decreased 0.90 kg ha-1 mm-1 relative 

to the GSP, a 7% decrease (p-value <0.0001; Table 4). The Low treatment paired t test plots 

average improved CWP by 0.40 kg ha-1 mm-1, a 3% increase relative to the GSP (p-value = 0.15; 

Table 4). Where 30% more irrigation was applied yields improved (6%), but CWP decreased 

(7%). In contrast, where irrigation was decreased 30% yields decreased (11%) and CWP 

improved (Table 4). This suggests an inverse relationship between CWP and yield when 

manipulated with irrigation, or the 30% irrigation changes were too extreme causing the 

decreased in CWP in the High treatment and yield decrease in the Low treatment. Further 

research is required to identify methods to alter irrigation rates bother temporally and spatially to 

promote CWP without compromising yield.  
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For the two seasons yield explained 94% (2016) and 55% (2017) of the variation of CWP 

(Table 3). Additionally, the 21% decrease in CWP between 2016 and 2017 (Table 1) is almost 

equal to the 23% decrease in yield (Table 2). A GWR analysis of CWP and yield additionally 

exhibited high correlation between yield and CWP with correlations ranging from 0.78-0.99 for 

2016 and 0.98-0.99 for the 2017 season respectively. Further GWR analysis with CWP and ET 

resulted in spatial coefficient range from (-) 0.57 – 0.19 and 0.362 – 0.796 for 2016 and 2017 

respectively. The differences in the GWR correlations between seasons are largely explained by 

the difference in irrigation management but suggest the relationship between ET and CWP is 

both spatially and temporally variable. The close association between yield and CWP indicate 

that agronomic management that strongly influenced yield, such as crop rotation, had a greater 

influence on CWP than manipulating CWP through irrigation treatments.  

Regarding management, this data indicates the spatial management of CWP with VRI 

requires additional agronomic practices. In fields with similar properties to this study site, 

managing spatial CWP will require a complete approach, including soil fertility, soil hydraulic 

properties, topography, etc. as suggested by King et al. (2006). The conceptual model improved 

the field uniformity of CWP, but further research is required to develop irrigation rate 

recommendations for yield and CWP combinations. Finally, the design of the experiment 

measured CWP response to irrigation, independent of other agronomic variables. Coupling VRI 

with other precision agriculture techniques such as variable-rate fertilization or planting may 

alter the response of CWP. 
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CONCLUSIONS 

This study evaluated the spatial variation of yields, ET, ΔS, and CWP in two consecutive 

years of irrigated winter wheat and proposed a unique conceptual strategy for VRI management 

targeted at CWP. Spatial and temporal variability of historic annual yields, ET, ΔS, and CWP 

was surprisingly large despite this field being relatively uniform in appearance, topography, 

texture, etc. Field averages of 11 and 14 kg ha-1 mm-1 CWP values were relatively high, but 

within the range of other values reported for US and world wheat production. Additionally, the 

first steps were taken in developing a conceptual model for VRI. Adjusting irrigation rates 

according to the proposed conceptual model had significant influence on the response of CWP 

and yield. The spatial variation in CWP and yield were highly correlated for both seasons. 

Surprisingly, correlation between ET and CWP was low for both seasons. Consequently, 

agronomic and environmental variations that strongly influenced yield altered CWP. This 

indicates that future approaches to manage CWP through VRI will likely require the 

development of algorithms that include a suite of agronomic management practices and 

environmental variations that have significant influence on the spatial variation of yield. Future 

research in fields with diverse environmental conditions is required to determine important 

variables to include in the characterization of VRI algorithms to conserve freshwater resources. 

Future research should also focus on finding inexpensive ancillary data that are related to CWP 

to determine irrigation application rates and zones.  
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FIGURES 

 

Figure 1-1. Conceptual model for delineation of variable-rate irrigation (VRI) zones based on 
separating the field into combination zones of high and low relative historic yield and crop water 
productivity (CWP). The four resulting quadrants each represent different field observations and 
recommended VRI management.   
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Figure 1-2. Bare soil image of the field research site near Grace, ID, USA with elevation contour 
lines (m) and soil sample points. Dark colored areas in the field and along edges are locations of 
unfarmed emerged bedrock. 
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Figure 1-3. Grower developed irrigation zones used in the 2016 season. Irrigation zones are a 
percentage of the grower’s standard practice (GSP) and were applied for each irrigation event 
excluding fertigation events. 
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Figure 1-4. Historic yield maps for (A) 2013 and (B) 2014 were combined with yields measured in 2016 (see Figure 6) to create (C) a 
relative yield map (combined across 2013, 2014, and 2016). 
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Figure 1-5. Developed irrigation zones based on historic yield and 2016 crop water productivity 
analysis with paired t-test plots outlined. The Low and High treatments received ± 30% of total 
irrigation relative to the grower standard practice (GSP). Paired T-test plots used for analysis are 
outlined in white boxes. 
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Figure 1-6. The spatial variation of 2016 and 2017 crop water productivity (CWP) constituents 
including: (A) 2016 change in soil moisture (ΔS) between spring green up and post-harvest, (B) 
2017 ΔS between spring green up and post-harvest, (C) 2016 seasonal evapotranspiration (ET), 
(D) 2017 seasonal ET, (E) 2016 yield, (F) 2017 yield with irrigation treatments outlined in black, 
(G) 2016 spatial variation of crop water productivity (CWP), (H) 2017 spatial variation of CWP 
with irrigation treatments outlined in black. 
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TABLES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1-1. Seasonal field and treatment averages and minimum and maximum values 
(shown in parenthesis after the average) of: precipitation (P), decrease in soil moisture 
between spring green-up and post-harvest (ΔS), irrigation (I), evapotranspiration (ET), 
and crop water productivity (CWP). Values in parentheses are the minimum and 
maximum values for that variable. In 2016, irrigation was nearly uniform, but in 2017 
irrigation treatments were applied—values for each treatment and the average of all 
are shown for that year. 

      
 P ΔS I ET CWP 
   
 -----------------------------mm-------------------------- kg ha-1 mm-1 

Treatment      
2016 

 
Average 95 227 (146-278) 198 520 (315-571) 14 (4.7-21) 

      
2017 

      
Average 90 190 (100-269)  497 (255-620) 11 (4.1-19) 

Low  190 (100-269) 158 437 (255-518) 11 (4.1-17) 
GSP  195 (154-260) 225 509 (434-574) 12 (5.2-19) 
High   195 (154-240) 291 573 (525-620) 11 (4.5-16) 
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Table 1-2. Whole field yield data from winter wheat harvested 
in 2013-2014 and 2016-2017 with descriptive statistics. Also, 
yields for areas with irrigation treatments for 2017. The Low 
and High treatments received ±30% irrigation rates relative to 
the grower standard practice. 

     
 Average St Dev. Min Max 
  

 --------------------Mg ha-1--------------------- 
     

2013 6.2 0.98 2.4 10.8 
2014 4.1 0.81 0.96 7.03 
2016 7.5 1.01 2.4 10.7 
2017 5.8 1.04 1.8 8.4 

 
2017 Treatments 

Low 4.9 0.91 1.8 7.6 
GSP 6.0 0.61 2.2 7.9 
High 6.4 0.69 3.0 8.4 

     
Average 5.9 0.77   
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Table 1-4. Paired t-test results for 2017 irrigation treatments for yield and 
CWP. Significance at the 0.05 level marked with ** and 0.15 level marked 
with *.  

                 
Treatment  High GSP   Low GSP  
         
Yield Mg ha-1 6.6 6.2 **  5.0 5.6 ** 
         
CWP kg ha-1 mm-1 11.4 12.3 **  11.0 10.6 * 
                 

  

Table 1-3. Correlation coefficients (R) and r2 (in 
parenthesis) between crop water productivity 
measurements including: crop water productivity (CWP), 
yield, seasonal evapotranspiration (ET), and decrease in 
soil moisture between spring green-up and post-harvest 
(ΔS).  

     
  CWP Yield ET  

 
2016 

CWP     

Yield 0.97 (94)    

ET -0.18 (3) 0.04 (0)   

ΔS -0.10 (1) 0.09 (1) 0.91 (83)  
 
2017 

CWP     

Yield 0.74 (55)    

ET 0.03 (0) 0.68 (46)   

ΔS 0.03 (0) 0.26 (7) 0.35 (12)  
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CHAPTER 2 

The Spatial Variability in Soil Water Holding Capacity and Modeling 
Spatiotemporal Soil Water Depletion and Crop Stress  

 

Jeffrey D. Svedina, Neil C. Hansena, Ruth Kerryb, and Bryan G. Hopkinsa 
aDepartment of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 

bDepartment of Geography, Brigham Young University, Provo, UT 
 

ABSTRACT 

Variable-rate irrigation (VRI) is a technology that seeks to apply spatially and temporally 

variable irrigation rates to match site-specific crop water demand. The spatial variation of soil 

water holding capacity (SWHC) is an important physical soil property for delineating VRI zones. 

The objectives of this study were to: (i) characterize the spatial variation of SWHC, (ii) model 

subsequent spatiotemporal variation of soil water depletion and crop stress, and (iii) compare 

winter wheat (Triticum aestivum sp.) crop yield responses to the spatiotemporal variation in crop 

stress and ET to inform future VRI management. Soil samples at 90 locations in a 22 ha field 

were collected at spring green-up and post-harvest for two growing seasons of winter wheat 

(Triticum aestivum sp.) in Grace, Idaho, USA. The SWHC was characterized and daily soil 

moisture and crop water stress modelled between sampling points using a daily soil water 

balance. The range in SWHC for a 1.2 m deep profile was 144-369 mm, a large variation given a 

field with limited variation in topography and soil texture. The modelled variation in the day of 

stress onset was large under uniform irrigation in 2016, spanning a 21 d period.  In 2017, with 

irrigation treatments employed in the field, the onset of crop stress spanned 56 d. In 2017 with 

irrigation zones implemented, 25% less water was applied with the VRI system compared to 

uniform irrigation. Interestingly the spatial variation of SWHC, and the subsequent modeled crop 

water stress was not significantly related to the spatial variation of yield in the two seasons. This 
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is surprising considering the large temporal variation of the onset of crop stress in both seasons. 

This suggests that interactions between the spatial variation of soil hydraulic properties and other 

environmental factors dictate the variation of yield in this field. Developing VRI prescriptions 

may require an approach that including environmental variables such as soil hydraulic properties, 

soil fertility, topography, and crop growth to match irrigation application to spatial crop water 

demand. 

 

INTRODUCTION 

Irrigation consumes 80-90% of fresh-water use in the United States and two-thirds of 

freshwater resources are altered for human use (Postel 1999). Irrigated agriculture produces 40% 

of the world’s food and fiber on 17% of cultivated land—producing nearly twice as much food 

per unit area compared to non-irrigated lands (Abdullah 2016; Evans et al. 2013; Shaible and 

Aillery 2012). Demand is increasing for existing water resources around the world from growing 

global population, declining groundwater levels, deteriorating water quality, increasing 

environmental regulations, rising recreational demands, and increasing international and 

interstate agreements, environmental regulation, water quality, and declining groundwater levels 

(Evans et al. 2013). In addition to the rising demand, the Food and Agriculture Organization of 

the United Nations (FAO) estimated that, under current management practices, by 2030, 

withdrawals for irrigation alone would need to increase by 14% to meet the world food demand 

(Abdullah 2016). These future projections clearly suggest that farmers will be required to 

increase food production with decreasing cultivatable land while at the same time reducing 

irrigation requirements. From these pressures, farmers are required to increase irrigation 

efficiency and food production per unit of applied water (Evans et al. 2013).  



www.manaraa.com

34 

 Traditional irrigation practices intend to apply uniform rates across farm fields to meet 

field average crop water demands. Spatial variability in crop water demand is driven by factors 

that influence plant health, rooting depth, and water and nutrient uptake. Among spatially 

variable factors are relatively permanent soil properties, such as topography, soil texture, organic 

matter content, and water-holding capacity. The challenge is further complicated by temporally 

variable factors such seasonal variation in solar angles, weather, microclimates, pests, pathogen 

pressure, crop response to management practices, and soil temperature, fertility status, and 

compaction. Thus, traditional irrigation contains inherent inefficiencies where portions of the 

field are over- or under-irrigated.  

Variable-rate irrigation (VRI) employs state of the art technology to spatially match 

irrigation application rates to crop water demand. King et al. (2006) compared VRI and uniform 

irrigation in a two-year potato (Solanum tuberosum L.) experiment and observed greater water 

productivity under VRI management. West and Kovacs (2017) suggested adoption of VRI 

irrigation and other precision agriculture techniques would lead to sustainable groundwater 

withdrawals in the Arkansas valley. Lo et al. (2016) found that VRI techniques were effective in 

mining undepleted soil water in field regions with greater soil water holding capacity (SWHC) 

— resulting in at least a potential 25 mm yr-1 irrigation reduction for 13% of Nebraska 

agricultural fields with center-pivot systems based on variations of soil properties.  

Soil water holding capacity is a static soil property that reflects the water available to the 

plant and has been shown to influence yield and crop water use (Sadler et al. 2005; Zhao et al. 

2017) and field scale have been observed (Haghvardi et al. 2015; Longchamps et al. 2015). As 

such, VRI zones are commonly delineated from the variation in SWHC (de Lara et al. 2017, 

Haghvardi et al. 2015, Hedley and Yule 2009; King et al. 2006; Lo et al. 2017). Therefore, 
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effective VRI management requires accurate and precise spatial information regarding soil 

properties and crop water status.  

 Coupling daily estimates of crop ET with known spatial variation of SWHC can be a 

basis for managing VRI with the goal of using soil water efficiently and triggering irrigation 

before soil moisture fall below a crop specific threshold (Allen et al. 1998). The crop specific 

threshold is identified as the readily available water (RAW) or as management allowed depletion 

(MAD). When soil moisture falls below the threshold, the crop transpiration is reduced and yield 

is likely affected. The objectives of this study were to: (i) characterize the spatial variation of 

SWHC, (ii) model subsequent spatiotemporal variation of soil water depletion and crop stress, 

and (iii) compare winter wheat (Triticum aestivum sp.) crop yield responses to the spatiotemporal 

variation in crop stress and ET to inform future VRI management. 

 

METHODS 

Site Description 

The study was conducted for two winter wheat growing seasons (2016-2017) in a 

commercial production field (22 ha) following a seed potato crop located near Grace, ID, USA, 

(42.60904, -111.788). The site is characterized by a growing season with 80 to 110 frost-free d 

and is located 1687 m above sea level (Figure 1). The soil is a silty clay loam Rexburg-Ririe 

complex and classified as coarse-silty, mixed, superactive, frigid Calcic Haploxerolls with 1-4% 

slopes. The field site contains 0.3 ha of unfarmed rock outcroppings (Figure 1). The mean annual 

precipitation is 392 mm with much of the precipitation falling as winter snowfall and spring rain.  
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Management Description 

The winter wheat crop was grown using best management practices regarding crop, soil, 

fertilizer, water, and pest management (Table 1). Nitrogen applications were 59 kg ha-1 and 175 

kg ha-1 of N for 2016 and 2017, respectively. Irrigation at the site is performed using a 380-m 

long center pivot sprinkler equipped with a Variable-Rate Irrigation System (Growsmart 

Precision VRI, Lindsay Zimmatic, Omaha, NE, USA). The relatively small adjustments of VRI 

rates in 2016 did not influence the model statistically and, coupled with inherent non-uniformity 

that accompanies sprinkler irrigation, the 2016 season is classified as “uniform irrigation”. 

Variable irrigation treatments were applied in 2017 during each event with ±30% relative to the 

GSP rate being applied. Irrigation treatments were delineated from historic yield and crop water 

productivity (See Chapter 1; Figure 2).  

Yield was determined with a calibrated yield monitor (New Holland Inteliview 4, Turin, 

Italy) using a mass flow sensor attached to the harvester, collecting yield with point 

measurements approximately every 1.5 m. Planting dates were 5 and 10 October in 2015 and 

2016, respectively. Harvest dates were 16 and 30 August in 2016 and 2017, respectively. The 

yield data was processed as described by Kerry and Oliver (2003). Erroneous data points were 

defined as outside the limits of ± 75% of the median. In addition, points where the combine did 

not harvest the full header width were removed. Yield data was calibrated using a weigh cart and 

validated with wheat bin storage showing an overall accuracy of +1%. 

 

Spatial Statistics and Interpolation 

Geostatistical methods were used to explore spatial variation in yield, seasonal ET, soil 

moisture, and crop stress throughout the study period. A sampling scheme with 90 points was 
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developed using the variogram of normalized difference vegetation index of bare soil aerial 

imagery of the field site. The variogram had an approximate range of 140 m so a sampling 

interval of 70 m (46 points) was used to capture spatial structure of variation in permanent soil 

properties following the approach suggested by Kerry and Oliver (2003). The gridded points 

were supplemented with randomly located points (44 points) to achieve a degree of nesting, to 

collect sufficient points for reliable variogram estimation (Webster and Oliver, 1992), and to 

better estimate the nugget component of the variogram. Careful attention was given to the 

distribution of the sampled and modeled soil water properties. The data was transformed to meet 

normality if the skewness of the data set was ±1, as departures from normality affect the stability 

of the variances and the corresponding variogram (Kerry and Oliver, 2008).  All experimental 

variograms were modeled using SpaceStat (BioMedware, SpaceStat 4, Ann Arbor, MI, USA) 

and ArcMap’s Geostatistical Analyst (Environmental Systems Research Institute (ESRI] 2011, 

ArcGIS desktop: Release 10, Redlands, CA, USA). All spatial maps were classified using Jenks’ 

natural breaks classification which determines the best arrangement of values into classes and 

identifies breaks in the ordered distribution of values that minimizes the within-class sum of 

squared differences (Hedley and Yule 2009). 

 

Soil Water Depletion Modeling 

Soil water depletion modeling followed Allen et al. (1998) and the FAO Penman-

Monteith estimation of ET to adjust daily soil water levels. Allen et al. (1998) describe the ETo-

Kc approach where ETo represents the evapotranspiration on that d from a reference crop and the 

Kc represents the adjustment for the growth stage of the specific crop being grown. Daily plant 

available soil water was modeled at the 90 soil sample points beginning with soil water measured 
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at spring green-up through post-harvest. A non-stressed spatially uniform reference 

evapotranspiration (ETo) and crop coefficient (Kc) was used over the field to estimate daily water 

removed from the soil. If, however, the daily soil moisture fell below a site-specific readily 

available water (RAW) point, a stress coefficient (Ks) was used to modify the non-stressed ETc 

and estimate ETc-adj. The soil water depletion was used to estimate the spatial and temporal 

variation of the crop stress coefficient (Ks). The model was validated by comparing the sum of 

modeled growing season daily ET with ET as measured from the following seasonal water 

balance approach: 

ET = P + I + ΔS – D (1) 

where P represents the seasonal precipitation, ΔS represents the difference in measured soil 

moisture between spring green-up and harvest, I is irrigation, and D is drainage during the 

season. Spring green-up and harvest soil samples were collected on April 18 and August 20, 

2016 and on May 4 and September 1, 2017, respectively. Soil cores were collected at four depths 

0-0.3 m, 0.3-0.6 m, 0.6-0.9 m, and 0.9-1.2 m with a 51 mm diameter auger to describe the 

moisture removed from the soil at 90 field locations (Figure 1). Drainage was calculated using 

the daily soil water depletion model (equation 6) whenever water inputs resulted in soil water 

that exceeded SWHC. Statistical measures of model fit followed Miner et al. (2013) including: 

(1) relative error (RE) (2) normalized objective function (NOF) and (3) root mean square error 

(RMSE). Where RE represents model bias, NOF indicates the fit of the model (where NOF < 1 is 

less than one standard deviation from the mean), and RMSE is the weighted differences between 

predicted and measured values in the same units as the modeled variables. 

Weather data to calculate daily evapotranspiration was collected at a weather station 

2,000 m from the field site (42.51496 N, -111.73606 W; Cooperative Agricultural Weather 

Network AgriMet). The weather data was used to calculate daily evapotranspiration (ETo) for a 
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reference crop using the American Society of Civil Engineers (ASCE) Standard Penman-

Monteith Evapotranspiration model (Allen et al. 1998). The crop coefficient approach (Allen et 

al. 1998) was used to calculate daily ETc adj using the following equation: 

ETc adj = Ks * Kc * ETo (2) 

where ETc adj is the adjusted ET from water stress and winter wheat crop specific conditions, Ks 

is the transpiration reduction factor reflecting the available soil water, Kc is the crop coefficient 

that reflects the winter wheat crop development stage, and ETo is the reference crop ET. The Kc 

curve was estimated from table values in a similar environment (Allen et al. 1998) and validated 

with field observations. The dimensionless transpiration reduction factor is represented as Ks and 

calculated as: 

𝐾𝐾𝐾𝐾 =
SWHC− Dr

(1 − p) ∗ SWHC
 

(3) 

 

where SWHC is the soil water holding capacity in the root zone (mm), p is the table value 0.55 

from Allen et al. (1998) that represents the average fraction of SWHC that can be depleted 

before crop stress, and Dr is the current root zone water depletion in mm.  

 Daily soil moisture was modeled based on the SWHC and the readily available soil water 

(RAW) using: 

SWHC=1000* (𝜃𝜃FC-𝜃𝜃WP)*Zr (4) 

RAW = p*SWHC (5) 

where SWHC is defined as above and calculated for each sampling depth in mm and summed 

across the crop rooting depth for a soil profile, 𝜃𝜃FC is the volumetric water content (m3 m-3) at 

field capacity, 𝜃𝜃WP is the volumetric water content at wilting point (m3 m-3), and Zr is the 

estimated rooting depth of the crop (1.2 m; Weaver, 1925). RAW is the readily available soil 

water content in the root zone (mm), and p is as defined above.  
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For each sample location, the soil was assumed to be at field capacity for the greater of 

the two green-up observed water content values for each soil sample depth.  This follows the 

guidelines from Martin et al. (1990)—that sampling 1-3 d after a thorough soil-wetting event 

when crop water use is small is a good indication of FC. Winter precipitation, mostly in the form 

of snow, acted as the wetting event for this field. We assumed fall soil samples were at WP 

because the soils had been dried down for harvest with 15 and 7.1 mm of rainfall since the last 

irrigation event 18 and 16 d for 2016 and 2017, respectively.  

The WP assumption was validated on 39 samples using a Decagon WP4C (WP4C 

Dewpoint PotentiaMeter, Decagon Devices, Pullman WA, USA) to estimate the relationship 

between volumetric soil moisture and water potential. For each validation sample, 4-5 known 

volumetric moisture values were analyzed on the WP4C to calculate water potential. Using a 

logarithmic fitted line, volumetric soil moisture was estimated at -1500 Kpa for each sample and 

compared to field estimated WP. All measured volumetric WP values were within ±10% of the 

fall soil moisture values for individual depths, and within 5% error when averaged for the whole 

soil profile, verifying the assumption that fall soil samples were at or very near WP.  

Daily root zone depletion was estimated using the following equation:  

Dr,i = Dr,i-1 – Pi – Ii  + ETc,i + DPi (6) 

where Dr,i is the soil moisture depletion in the root zone at the end of d i, Dr,i-1 is the root zone 

depletion at the end of the previous d, Pi is the precipitation on d i, Ii is the irrigation depth on d i, 

ETc,i is the crop evapotranspiration on d i, and DPi is water loss out of the root zone by deep 

percolation on d i. 
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RESULTS 

 

Spatial Variation of Soil Water Properties and Yield 

 The amount of water at FC for the 1.2 m deep soil profile varied spatially, with an 

average of 389 mm and range of 373 - 422 mm (Figure 3A). The semivariogram ranges for FC 

and WP were 574 and 30 m, respectively and is shown by the larger size of zones with similar 

values in FC. In contrast, for WP, although some larger structure is present, the variation is 

dominated by small, somewhat random structure. Because SWHC is the difference between FC 

and WP, the spatial randomness in WP is found in SWHC—giving the map a spotty appearance 

(Figure 3B). The field average SWHC is 258 mm in the 1.2 m deep soil profile, with a large 

range from 147 - 369 mm (Figure 3B). The soil moisture accounted for 50% of the seasonal ET 

in 2016 and 43, 38, 33% for the Low, GSP, and High 2017 treatments, respectively.  

The spatial variation of yield for each year did not reflect patterns in FC, SWHC, or WP. 

Linear regression analysis between yield and SWHC was not significant (Table 3)—suggesting 

the variation of yield was not statistically influenced by the spatial variation of SWHC during 

either season (Figure 4). The 2016 yield average was 7.5 Mg ha-1, ranging from 2.4 - 11 Mg ha-1; 

while the 2017 average was 5.8 Mg ha-1, ranging from 1.8 - 8.4 Mg ha-1 (Figures 5 and 6). The 

western toe slope and eastern plateau produced the greatest yields in both seasons (Figures 5 and 

6), as well as in 2013 - 2014 (See chapter 1). The areas with the lowest yields in 2016 were 

found at the eroded slope area, in addition to field edges and emerged bedrock (Figures 1 and 5). 

The areas with the lowest yields in 2017 followed this same pattern, but was exacerbated by the 

Low irrigation treatment. A semi-circle of high yield is found at the leaky third pivot joint in 

both years as a response from leaks during irrigation and fertigation events. Irrigation treatments 

significantly influenced yield in 2017, with highest yield associated with the High irrigation 
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treatment (Figure 5; Table 2). Interestingly, this semi-circle from the pivot leak is evident across 

all treatments, demonstrating yield responded to the extra water and nutrients regardless of 

irrigation rate.  

 The field average yield was 23% lower in 2017, which is a common response to this crop 

rotation. Potatoes have inefficient root systems and demand high applications of nutrients and 

water potentially leaving residual nutrients and water available to the first-year wheat in the 

deeper soil profile (Hopkins, 2015; Hopkins and Hirnyck, 2007; Miller and Hopkins, 2007). 

Additionally, pests and pathogens are often crop specific and, thus, the yields are commonly 

reduced in the successive year of growing the same species (Hopkins 2010; Hopkins and 

Hirnyck 2007; Miller and Hopkins 2007). The grower confirmed that historically first year wheat 

produces much greater yields. Symptoms and crop damage from greater pest and pathogen 

populations were not readily observed in this field, but this is common to have reduced yields 

due to a lack of rotation without any major visible difference. It is not possible to attribute which 

of these factors affected the second-year wheat yields, but likely a combination effect. Notably, 

in the season with employed VRI treatments (2017), the yield reduction was not as dramatic. 

 

Model Evaluation 

The two measures used to validate the daily soil moisture were the seasonal ET and the 

soil moisture at harvest. Modelled predictions of seasonal ET matched well with seasonal ET 

calculated from a water balance (RMSE 73 mm), with a moderate bias towards over-prediction 

(1.3%; Figure 7). Model predictions of soil moisture at harvest also matched well with measured 

values (RMSE 81 mm, Figure 7), with bias towards under prediction (RE -5%; Figure 7). For 

seasonal ET and soil moisture at harvest, model predictions were within one standard deviation 
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of the mean for both years (NOF <1). For both comparisons, model fit was better in 2016 than in 

2017 (Figure 7). The likely reason for the greater RMSE in 2017 is that daily ET was calculated 

using a spatially uniform crop coefficient—even while using variable-rate irrigation zones. 

Effectively the uniform crop coefficient treated the whole field crop growth as uniform 

regardless of environmental variability. This strongly indicates that using spatially variable crop 

coefficients in a dynamic VRI management systems has the potential for additional water 

conservation. 

2016 Model: Uniform Irrigation 

The 2016 model covered d 111 - 230 with 11 total irrigation events (Figure 8). Irrigation 

began on d 151 with 11 events applying 198 mm over 11 events occurring nearly every 4 d 

(Table 2). Because the model uses a spatially uniform crop coefficient, modeled rates of soil 

moisture depletion are the same at each site until soil moisture at individual sites is predicted to 

go below RAW, at which time a Ks factor is introduced (Figure 8). The modelled variation in soil 

water depletion demonstrates the hypothesized importance of spatial variation of FC, WP, RAW, 

and SWHC for VRI management. 

The onset of modelled crop water stress, where soil moisture depletion fell below RAW, 

began on d 175 (point 20) with the last location falling below RAW on d 196 (point 37), showing 

a range of 21 d (Figure 8). When the last modeled location reached stress (d 196) the adjusted 

ETc-adj was 8.4 mm, compared to 5.4 mm when the first modeled location to reached stress (d 

175). Therefore, the differences in SWHC and crop water stress reduced ET by 36% between the 

first and last points to experience water stress. The 2016 season was uniformly irrigated so the 

variation of soil moisture depletion was a direct result of the variation in SWHC and the spring 
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soil moisture levels. Therefore, the three-week range in the onset of crop stress derived from the 

field’s natural variation in SWHC (Figure 8).  

The spatial variation of crop water stress was represented as the seasonal average Ks for 

each location, where a Ks of 1.0 indicates there was no crop water stress. The seasonal average 

Ks ranged from 0.76 – 0.83 and were not significantly correlated with yield (Figure 9; p-value = 

0.54). This suggests that during 2016 other environmental and/or soil factors dictated yield 

variability and that the variation of SWHC did not play a critical role in the 2016 yield variation 

(Figure 9). 

2017 Model: Variable-Rate Irrigation 

The 2017 model began on d 125 and ended on d 244 with 14 irrigation events (Figure 

10). Variable irrigation treatments were applied during each event with ±30% relative to the GSP 

rate being applied. Irrigation began d 143 with events occurring, on average, every 5 d. Total 

irrigation for Low, GSP, and High treatments were 158, 225, 291 mm total for the 2017 season. 

A total 25% less water was applied to the field, compared to the amount that would have been 

applied if the GSP were utilized during the 2017 season.  

The first onset of stress was modeled on d 155 at (point 112) and the last occurred d 211 

(point 36)—spanning 56 d. The temporal variation in the onset of stress resulted in a spatial 

variation of stress on d 211 with point 35 ETc-adj at 7.0 mm and point 112 ETc-adj at 2.9 mm; a 

59% reduction in daily ETc-adj from crop water stress. The irrigation treatments exacerbated the 

extremes in crop stress but the variations in crop stress were also a function of soil SWHC 

(Figure 10). Meaning some points that received the High irrigation rate experienced stressed 

before points that received the GSP rate and the same for the Low and GSP treatments. For 



www.manaraa.com

45 

example, the temporal range of when the first and last point experienced modeled water stress 

was d 155 - 187, d 158 - 195, and d 186 - 211 (32, 37, and 25 d) for the Low, GSP, and High 

zones, respectively (Figure 10). This indicates that the Low treatment modelled points 

experienced stress, on average, much earlier in the season compared to the other irrigation rates.  

The 2017 seasonal average Ks values ranged from 0.63-0.86, with the field average Ks 

value of 0.78. The 2017 field average Ks value was 5% lower (5% greater crop water stress) 

compared to 2016—with a standard deviation of 0.07 compared to 0.03 for 2016. Multi-linear 

regression analysis predicting yield by irrigation treatment, Ks, and SWHC resulted in irrigation 

treatment as the only significant variable in predicting yield (Figure 11; Table 4) with SWHC 

significant at the 0.15 level (p-value 0.12). This shows that the field variation of SWHC is of 

lesser importance for crop yield than irrigation.  Therefore, based on the 2016 and 2017 field 

data, for this site additional variables and SWHC could improve irrigation zone delineation.  

 

DISCUSSION 

 The objectives of this research were threefold (i) characterize the spatial variation of 

SWHC, (ii) model subsequent spatiotemporal variation of soil water depletion and crop stress, 

and (iii) compare winter wheat (Triticum aestivum sp.) crop yield responses to the spatiotemporal 

variation in crop stress and ET to inform future VRI management. Spatial variation in soil water 

properties was observed for FC (373 - 422 mm), SWHC (147 - 369 mm), and WP (106 - 221 

mm) despite limited spatial variations in soil texture and topography. The range in SWHC was 

surprisingly large, but similar variation in SWHC has been observed at the field scale in other 

studies (de Lara et al. 2017; Daccache et al. 2015; Lo et al. 2017; Longchamps et al. 2015; 

Haghverdi et al. 2015). The WP spatial patterns appear random with variations too small 

(approximately 30 m variogram range) to be desirable to manage or to properly address with 5 m 
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nozzle spacing on the VRI center-pivot (Figure 3). The random behavior of the WP properties 

may be from the variation of the depth to bedrock and the random mixture of rocks in the deeper 

soil profile that influence the SWHC. The SWHC is influenced by WP and some of the random 

variation of WP is seen in the SWHC map (Figure 3). 

Surprisingly, despite the large spatial variation of SWHC, there was limited correlation 

with yield. This observation is different from Haghverdi et al. (2015) where strong correlations 

were observed between SWHC and cotton and soybean yield. Additionally, Zhao et al. (2017) 

observed yield and water productivity responses to field zones delineated by SWHC with less 

variability (158.1 - 168.7 mm). Fraisse et al. (2001) observed that with adequate soil moisture the 

number of management zones decreased, and DeJonge et al. (2007) observed that large seasonal 

irrigation applications can reduce spatial yield variability. Irrigation contributes over 50% of the 

total seasonal ET, which may explain the poor relationship between yield and SWHC for this 

field. 

The temporal range of the onset of crop water stress for the whole field was 21 and 56 d 

for 2016 and 2017 respectively. The GSP in 2017 was 37 d with 32 and 25 d ranges for the Low 

and High treatments respectively. The 2017 irrigation rates created the larger temporal variation 

of crop stress which lead to significant variation in yield between irrigation rates. However, 

controlling for irrigation treatment, the variation of crop water stress did not significantly predict 

yield for either season (Table 4). The variation in yield throughout the field demonstrates that 

there are variations in crop water demand throughout the field (Figures 5 and 6). Study results 

suggests that environmental factors other than soil water properties dictated this variation.  

Regarding the specific management of this field, this information is useful in determining 

field scale allocation of water resources when water resources are scarce. For example, the 

grower is forced to decide whether to allocate freshwater resources to the greatest soil SWHC or 
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to the greatest yield. Our data suggests that the spatial variation of SWHC does not dictate the 

variation of yield and allocating irrigation to the historically greater yield zones would be a better 

use of a limited water supply. Preliminary research investigating the variation of crop water 

productivity, crop produced per unit of applied water, is very closely related to the variation of 

yield (Chapter 1). These data sets suggest that historic yield patterns are valuable in identifying 

irrigation zones that conserve water and are economically profitable. However, further research 

is required in deciding where to allocate irrigation to gain the greatest water productivity and key 

temporal triggers to maximize yield and water productivity spatially across the field.  

While increasing irrigation during peak ET rates may not be possible, early spring 

irrigations can create a buffer against crop water stress during peak crop demand and improve 

yields. Additionally, the lack of correlation between soil hydraulic properties and yield indicate 

that other environmental factors (such as soil borne pests/pathogens; weeds; topography; local 

variations in sunlight due to aspect and/or soil organic matter, fertility, depth, etc.) are driving 

yield variation in this field when receiving adequate, or nearly so, water. This shows the 

importance of a comprehensive agronomic approach to VRI, in this field the interaction with 

SWHC with other variations is required to determine the variable crop water demand. This 

compliments the suggestion from Evans and King (2012) that integrated comprehensive decision 

support tools are required to optimize the allocation of limited water and should include holistic 

approaches. Plant feedback systems, such as thermal stress indices, to diagnosis crop water stress 

have shown promise in using VRI to address spatial crop water demand (O’Shaughnessy et al. 

2015). These systems, coupled with knowledge regarding the spatial variation of fertility and 

SWHC could lead to spatially variable irrigation recommendations that describe the spatial and 

temporal crop water demand. 
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CONCLUSIONS 

 The spatial variation of SWHC and spatiotemporal relationships of modelled daily soil 

moisture depletion with yield were characterized in two seasons of winter wheat. Modelled 

spatiotemporal variations of SWHC and crop stress were large, but irrigation treatment was the 

only significant variable in predicting yield. Therefore, for this field VRI management is not 

justified simply because of large SWHC variations exist. Instead coupling variation in soil 

hydraulic properties with supplementary data regarding the spatial variation of crop water status, 

potential yield, and other environmental factors are required for VRI management. Further 

research is required in adapting spatial and temporally variable crop coefficients and integrating 

proximal and remote sensing to estimate spatial soil properties, crop coefficients, and crop water 

demand to inform variable-rate irrigation.    
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FIGURES 

 

Figure 2-1. Irrigation treatments for the 2017 growing season. The Zero zone received no 
irrigation on unfarmed rock outcroppings. The Low and High zones received ± 30% irrigation 
relative to the grower standard practice (GSP). 
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Figure 2-2. Irrigation treatments for the 2017 growing season. The Zero zone received no 
irrigation on unfarmed rock outcroppings. The Low and High zones received ± 30% irrigation 
relative to the grower standard practice (GSP). 
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Figure 2-3. Spatial variation of measured soil hydraulic properties including (A) field capacity 
(B) wilting point and (C) soil water holding capacity. All zones were created using the Natural 
Jenks method to create zones with the least in-zone variation. 
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Figure 2-4. Linear relationship between 2016-2017 measured yield and total available soil water 
in the root zone (1.2 m depth) measured at 90 points at the study site. 
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Figure 2-5. The spatial variation of measured winter wheat yield for the 2016 season.  
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Figure 2-6. Spatial variation of winter wheat yield for the 2017 seasons with irrigation treatments 
(Figure 2) outlined in black.  
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Figure 2-7. Modeled soil moisture for the fall sample dates in both 2016 and 2017 versus the 
measured soil moisture for both years and modeled total seasonal ET versus the water balance 
calculated ET. Model fit statistics include relative error (RE), normalized objective function 
(NOF), and root mean square error (RMSE). 
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Figure 2-8. Modeled root soil moisture depletion for 85 spatially variable points beginning at 
spring green up and ending at harvest under uniform irrigation in 2016. Rain and irrigation 
events are identified on the second axis on their respective d. Field average readily available 
water (RAW) and one standard deviation above and below the mean are identified with dashed 
lines. The figure illustrates that there is significant spatial variation in when soil water falls 
below RAW, which translates to spatial variation in crop water stress.   
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Figure 2-9. Linear fit for modelled average crop stress (Ks) and winter wheat yield for the 2016 
season. Linear fit not statistically significant (p-value = 0.64) 
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Figure 2-10. Modeled root soil moisture depletion for 90 spatial points beginning at wheat spring green up and ending at harvest. Each 
graph represents the irrigation treatment that the respective points received with rain and irrigation rate identified on the secondary y-
axis. Field average readily available water (RAW) identified with one standard deviation from the mean identified with dashed lines, 
when points fall below their respective RAW during growth or maturity the crop is stressed and yield is reduced. 
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Figure 2-11. Linear fit for seasonal modeled crop stress coefficients (Ks) and yield for the 2017 
growing season and for irrigation treatments. The 2017 seasonal average crop stress was 
statistically significant across all points for the 2017 season (p-value< 0.001) but within 
treatment variation of crop stress and yield was not statistically significant, meaning statistical 
significance is from irrigation treatments. 
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TABLES 

Table 2-1. Field average soil test results 0-30 cm depth. This sampling depth is typical where the topsoil is mixed every 3 years from 
potato harvest. 

Phosphorus Potassium  Nitrogen 
Organic 
Matter  CaCO3  Clay  Silt  Sand Texture pH 

---------- ppm ---------- ---------------------------------------- % ---------------------------------------- 

30 234 0.13 1.7 2.8 34 58 8 Silty Clay Loam 7.6 
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Table 2-2. Seasonal data for the two study years and irrigation 
treatments in 2017. Letters signify statistical differences at p < 0.05 

     

Season  Precipitation Irrigation ET Yield 
   

 --------------------cm-------------------- Mg ha-1 
     

2016 10 20 53 7.5 
2017 9 23 50 5.8 

 
2017 Irrigation Treatments 

Low  16 44 4.9a 
GSP  23 52 6.0b 
High  30 57 6.4c 

     
 
 
 
 
 
 

Table 2-3. Regression analysis of year and total plant available soil water (SWHC) in 
predicting yield for the 2016 and 2017 seasons. Statistical significance marked with 
asterisks where p-value < 0.05 

    
Variable Estimate Standard Error p-value     
Intercept 6.01645 0.75187 < 0.0001* 

Year[2016] 0.89451 0.08865 < 0.0001* 
SWHC (mm) 0.01532 0.28942 0.5973 
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Table 2-4. Regression analysis of 2017 irrigation treatments, average crop 
stress, and total plant available water in predicting yield. Asterisk signifies 
statistical significance where p < 0.05 

Source Sum of Squares p-value

Irrigation Treatments 19.591987 <0.0001* 
Average Ks 0.958153 0.2406 

SWHC (mm) 16.69818 0.1227 
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